Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Penetrating and disturbed electric fields develop during geomagnetic storms and are effective in driving remarkable changes in the nightside low latitude ionosphere over varying time periods. While the former arrive nearly instantaneously with the changes in the solar wind electric field, the latter take more time, requiring auroral heating to modify upper atmospheric winds globally, leading to changes in the thermospheric wind dynamo away from the auroral zones. Such changes always differ from the quiet time state where the winds are usually patterned after daytime solar heating. We use the Multiscale Atmosphere‐Geospace Environment model (MAGE) and observations from the NASA Ionospheric Connection Explorer (ICON) mission to investigate both during the 7–8 July 2022 geomagnetic storm event. The model was able to simulate the penetrating and disturbed electric fields. The simulations showed enhanced westward winds and the wind dynamo induced upward ion drift confirmed by the ICON zonal wind and ion drift observations. The simulated zonal wind variations are slightly later in arrival at the low latitudes. We also see the penetrating electric field opposes or cancels the disturbed electric field in the MAGE simulation.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            A new version of the US National Science Foundation National Center forAtmospheric Research (NSF NCAR) thermosphere-ionosphere-electrodynamicsgeneral circulation model (TIEGCM) has been developed and released. Thispaper describes the changes and improvements of the new version 3.0since its last major release (2.0) in 2016. These include: 1) increasingthe model resolution in both the horizontal and vertical dimensions, aswell as the ionospheric dynamo solver; 2) upward extension of the modelupper boundary to enable more accurate simulations of the topsideionosphere and neutral density in the lower exosphere; 3) improvedparameterization for thermal electron heating rate; 4) resolvingtransport of minor species N(2D); 5) treating helium as a major species;6) parameterization for additional physical processes, such as SAPS andelectrojet turbulent heating; 7) including parallel ion drag in theneutral momentum equation; 8) nudging of prognostic fields near thelower boundary from external data; 9) modification to the NO reactionrate and auroral heating rate; 10) outputs of diagnostic analysis termsof the equations; 11) new functionalities enabling model simulations ofcertain recurrent phenomena, such as solar flares and eclipse. Wepresent examples of the model validation during a moderate storm andcompare simulation results by turning on/off new functionalities todemonstrate the related new model capabilities. Furthermore, the modelis upgraded to comply with the new computer software environment at NSFNCAR for easy installation and run setup and with new visualizationtools. Finally, the model limitations and future development plans arediscussed.more » « lessFree, publicly-accessible full text available May 27, 2026
- 
            Abstract Using the latest coupled geospace model Multiscale Atmosphere‐Geospace Environment (MAGE) and observations from Jicamarca Incoherent scatter radar (ISR) and ICON ion velocity meter (IVM) instrument, we examine the pre‐reversal enhancement (PRE) during geomagnetic quiet time period. The MAGE shows comparable PRE to both the Jicamarca ISR and ICON observations. There appears to be a discrepancy between the Jicamarca ISR and ICON IVM with the later showed PRE about two times larger (∼40 m/s). This is the first time that MAGE is used to simulate the PRE. The results show that the MAGE can simulate the PRE well and are mostly consistent with observations.more » « less
- 
            Abstract This study investigates the impact of the lower‐thermospheric winter‐to‐summer circulation on the thermosphere's thermal structure and meridional circulation. Using NCAR TIE‐GCM, we compare simulations with and without the lower‐thermospheric circulation, finding that its inclusion enhances summer‐to‐winter thermospheric circulation by 40% in the summer hemisphere but decelerates it in the winter thermosphere. Meanwhile, vertical wind exhibits stronger upward motion poleward of latitude above hPa (174 km) when lower‐thermospheric circulation is incorporated. This dynamic coupling functions as an atmospheric “gear mechanism,” accelerating momentum and energy transfer to higher altitudes. Including lower‐thermospheric circulation improves agreement between the nudged run and NRLMSIS 2.1 in intra‐annual variability (IAV) of mass density. This suggests lower‐thermospheric circulation is a key factor in modulating IAV in the coupled thermosphere‐ionosphere system. This study reveals a new coupling mechanism between the lower atmosphere, thermosphere, and ionosphere, with significant implications for understanding upper‐atmospheric dynamics and improving space weather models.more » « less
- 
            Abstract Using theHighattitude Interferometer WIND observation balloon and Antarctic Jang Bogo station high latitude conjugate observations of the thermospheric winds we investigate the seasonal and hemispheric differences between the northern and southern hemispheres in June 2018. We found that the summer (northern) hemisphere dayside meridional winds have a double‐hump feature, whereas in the winter (southern) hemisphere the dayside meridional winds have a single hump feature. We attribute that to stronger summer, perhaps, northern hemisphere cusp heating. We also compared the observation with NCAR Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) model. The TIEGCM reproduced the double‐hump feature because of added cusp heating. The summer hemisphere has stronger anti‐sunward winds. This is the first time we have very high latitude conjugate thermospheric wind observations.more » « less
- 
            Abstract The Global‐scale Observations of Limb and Disk (GOLD) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instruments were used to investigate the thermospheric composition and temperature responses to the geomagnetic storm on 23–24 April, 2023. Global‐scale Observations of Limb and Disk observed a faster recovery of thermospheric column density ratio of O to N2(ΣO/N2) in the southern hemisphere (SH) after the storm ended at 12 Universal time (UT) on 24 April. After 12 UT on 25 April, ΣO/N2had mostly recovered in both hemispheres. Global‐scale Observations of Limb and Disk also observed an increase of middle thermospheric temperature (140–200 km) (Tdisk) on 24 April with a maximum of 340 K. Within 4–6 hr of the storm ending on 24 April, Tdisk enhancement persisted between 30°N and 60°N, 100°W and 30°W, while Tdisk lower than pre‐storm quiet day (17 April) was observed between 45°W and 15°W, 40°S and 50°N. Tdisk recovered between 100°W and 45°W, 30°N and 55°S. On 25 April, Tdisk was lower than on 17 April across the entire GOLD Field‐of‐Regard (FOR) by ∼50–110 K. Additionally, solar irradiance decreased by 15%–20% from 17 to 25 April, indicating that the lower Tdisk on 25 April resulted from both storm and solar irradiance variations. Latitudinal variations of Tdisk and the SABER observed Nitric Oxide (NO) cooling rate revealed that NO cooling is crucial for the lower Tdisk in the northern hemisphere (NH) mid‐high latitudes on 25 April. These results provide direct evidence of decreased thermospheric temperature during storm recovery phase than pre‐storm quiet times.more » « less
- 
            Climate change is characterized by global surface warming associated with the increase of greenhouse gas population since the start of the industrial era. Growing evidence shows that the upper atmosphere is experiencing appreciable cooling over the last several decades. The seminal modeling study by Roble and Dickinson (1989) suggested potential effects of increased greenhouse gases on the ionosphere and thermosphere cooling which appear consistent with some observations. However, several outstanding issues remain regarding the role of CO 2 , other important contributors, and impacts of the cooling trend in the ionosphere and thermosphere: for example, (1) what is the regional variability of the trends? (2) the very strong ionospheric cooling observed by multiple incoherent scatter radars that does not fit with the prevailing theory based on the argument of anthropogenic greenhouse gas increases, why? (3) what is the effect of secular changes in Earth’s main magnetic field? Is it visible now in the ionospheric data and can it explain some of the regional variability in the observed ionospheric trends? (4) what is the impact of long-term cooling in the thermosphere on operational systems? (5) what are the appropriate strategic plans to ensure the long-term monitoring of the critical space climate?more » « less
- 
            Abstract Motivated by numerous lower atmosphere climate model hindcast simulations, we performed simulations of the Earth's atmosphere from the surface up through the thermosphere‐ionosphere to reveal for the first time the century scale changes in the upper atmosphere from the 1920s through the 2010s using the Whole Atmosphere Community Climate Model—eXtended (WACCM‐X v. 2.1). We impose solar minimum conditions to get a clear indication of the effects of the long‐term forcing from greenhouse gas increases and changes of the Earth's magnetic field and to avoid the requirement for careful removal of the 11‐year solar cycle as in some previous studies using observations and models. These previous studies have shown greenhouse gas effects in the upper atmosphere but what has been missing is the time evolution with actual greenhouse gas increases throughout the last century, including the period of less than 5% increase prior to the space age and the transition to the over 25% increase in the latter half of the 20th century. Neutral temperature, density, and ionosphere changes are close to those reported in previous studies. Also, we find high correlation between the continuous carbon dioxide rate of change over this past century and that of temperature in the thermosphere and the ionosphere, attributed to the shorter adjustment time of the upper atmosphere to greenhouse gas changes relative to the longer time in the lower atmosphere. Consequently, WACCM‐X future scenario projections can provide valuable insight in the entire atmosphere of future greenhouse gas effects and mitigation efforts.more » « less
- 
            Abstract We study the variations of the topside ionospheric ion density measured by Defense Meteorological Satellite Program satellites during the intense magnetic storm on 7–10 November 2004. It is found for the first time that quasi‐periodic enhancements in the ion density with a period of ∼6 hr occur nearly simultaneously at 0630, 0830, and 0930 local time in the dawn sector during the storm main phase with southward interplanetary magnetic field (IMF). The quasi‐periodic density enhancements extend from the southern subauroral latitudes to the northern subauroral latitudes. In the dusk sector, the topside ion density during the storm main phase is increased at middle latitudes for ∼12 hr but shows decrease or relatively small increase over the magnetic equator, indicating that penetration electric fields dominate the ion density redistribution. Similar quasi‐periodic enhancements in the topside ion density are also observed in the dawn sector during other intense magnetic storms. The solar wind and IMF do not have quasi‐periodic variations in this storm case. Periodic processes in geospace, such as periodic substorms in the magnetosphere, waves and tides in the atmosphere, and traveling ionospheric disturbances, cannot explain the observed periodic enhancements of the ionospheric ion density. We suggest that the magnetosphere‐ionospheric‐thermospheric system may have an intrinsic period of ∼6 hr and that oscillations of the magnetosphere‐ionospheric‐thermospheric system with this period can be excited during intense magnetic storms, although the mechanisms for the generation of the long‐periodic oscillations are not understood.more » « less
- 
            Abstract This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
